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Abstract 

This i s  a complete documentation of a computer program for analyzing finite time stability 

properties of equilibrium points of  time-dependent (nonconservative) Hami ltonian systems. 

Using this package, approximate analytic solutions which contain nonlinear effects can be 

constructed near these equi librium points. Qualitative rate-of-growth estimates can also 

be obtained. This program description is  a sequel to "Birkhoff Normalization Process Pro- 

gram for Time-Independent Hamiltonian Systems", AFOSR Scientific Report No. AFOSR 

67-0123 (October, 1966) which contained the program description for analyzing time-inde- 

pendent Hami ltonian systems. 

Eleven programs constitute the complete package. The first six programs perform the second 

order normalization and the next three apply the Birkhoff technique for higher order norma- 

lizations. These nine programs compute the generating functions and coordinate transforma- 

tions for a time-dependent Hamiltonian in the neighborhood of an equilibrium point. The 

remaining two programs evaluate actual trajectories for the particular application under 

consideration. The first of these evaluates the trajectory for the normalized Hamiltonian 

and the second performs a point by point integration of the equations of motion of the given 

dynamical system. 

The computer program developed here has been used to generate an algebraic solution for 

the motion of a particle near an equilibrium point of the planar ell iptical restricted three- 

body problem. Sufficient time-dependent and nonlinear terms have been retained to produce 

trajectories which match solutions obtained by numerical integration of the equations of  

motion for 30 days or longer. Computation time for the normalized trajectory i s  insignificant 

compared to  the time required for numerical integration. Sources of truncation and round-off 

errors in the normalization process are identified. 

I 
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I. INTRODUCTION 

The study of  stability properties of solutions of nonlinear dynamical systems presents serious 

mathematical difficulties. For this reason, early investigations of the stability of the tri- 

angular equilibrium points or libration points of the circular restricted three-body problem 

of celestial mechanics were limited to the linear case, or the f i r s t  approximation [ 11. 
This i s  true also in more recent studies of the ell iptical restricted three-body problem" 

[2,3,4] . Unfortunately, the behavior of these and many other interesting nonlinear 

systems cannot be predicted from the linear analysis, but depends on the nature of the 

nonlinear terms. Theoretically, stability can be decided by the construction of  a Liapunov 

function €51 , but there i s  no straightfoiward way to  construct such functions for arbitrary 

dynamica I systems. 

Considerable progress in the qualitative theory of nonlinear dynamical systems has been 

made following Kolmogorov in 1954, notably by V.I. Arnold and J. Moser. In 1962, 

Leontovich [ 6 ]  applied a theorem of Arnold to establish the stability of the triangular 

libration points of the planar circular restricted three-body problem for almost al I admissible 

mass ratios, Very recently, Deprit and Deprit-Bartholomk [7] have applied results of 

Moser to refine Leontovich's results. Corresponding work i n  the el l ipt ical problem has not 

appeared i n  the literature. 

G.D. Birkhoff [8] established i n  1927 a quantitative method for determining stability 

properties of equilibrium points and periodic solutions of Hamiltonian systems. He showed 

that by an infinite series of steps, the differential equations can be transformed into an 

integrable system of equations, whose solution may be transformed into the original variables 

to  determine the behavior of solutions near the given equilibrium point or periodic solution. 

Qualitative rate-of-growth information may also be obtained from this method. In imple- 

menting Birkhoff's "normalization" process, one carries out only a finite number of steps, 

of course. Accordingly, the solution obtained i s  that for a differential system approximating 

"Known also as the reduced three-body problem. 

1 



AEROSPACE RESEARCH CENTER G E N E R A L  PRECISION SYSTEMS INC. 

the o;igirhul HamiItonian system (I Even so, using contemporary symbolic manipulation 

techniques and high speed digifal computers, it i s  pracfical BO retain enough nonlinear 

!ems i n  the norrnalizakion process so that accurate solutions are obtained, valid over long 

f ime interals. Thus the Biskhoff normaIization technique i s  a means to analyze, in a 

quantiaative way, finite-time stubiliny properties of nonlinear dynamical systems, without 

recow-se to numerical integration and i t s  attendant errors. 

The Bkkhoff normalization process i s  applicable to: 

Study of krajectosies near an equilibrium poinf of a conservative Hamiltonian system. 

Study of trajectories near an equilibrium point of a nonconservative Hamiltonian 

system hawing a periodic Hamilf.onian function e 

In a conservative Hamiltonian system, study of trajectories near a periodic 

trajectory which l ie on a surface having the same energy as the given 

periodic trajectory. 

The planar circular restricted three-body problem i s  a conserdative Hamiltonian system 

with equilibrium points, and we have applied the Birkhoff normalization process to that 

sysfem [ 9 ]  i n  an earlier study, 

This seporf describes the application of the Birkhoff normalization process to a nonconserva- 

five Hamiltonian system with a periodic Hamiltonian function and equilibrium points. In 

the next two sections, we w i l l  describe i n  detail the implementation of the Birkhoff 

normalization process for an arbitrary Hamiltonian function of this type. We w i l l  then 

consider specifically the planar el l iptical restricted three-body problem, and i t s  triangular 

libration point Lq0 
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II. NORMALIZATION PROCEDURES 

The normalization procedure i s  applied to time-dependent Hamiltonians expanded about an 

equilibrium point which i s  also the origin of coordinates. In this form, the Hamiltonian i s  

H = H (t) + H (x,y,t) + ... + H (x,y,t) + ... , (11.1) 
0 2 n 

where Hn i s  a homogeneous polynomial of degree n in the conjugate vector x,y, with 

coefficients having period 2n in t. As H (t) plays no role i n  the analysis, we w i l l  not 

consider it. A Hamiltonian i s  considered normalized fo a finite order when it has the form 
0 

For small values of the state variable (xly) the higher homogeniety portion, H can be 

dropped resulting i n  
b 

a 
Hm H 

where the exact solution for 

conjugate variables. The chief requirement of the normalization procedure i s  to find 

canonical coordinate transformations that w i l l  take the original Hamiltonian ( I 1  e 1) and 

put i t  i n  the form of (11.2). These required transformations fal l  into two separate categories, 

where the first normalizes the Hamiltonian to second order [IO] 

H exists and i s  an harmonic oscillator for each pair of 
a 

w w 

and the second systematically normalizes the Hamiltonian to higher orders by a repeafed 

application of Birkhoff’s normalization procedure [8] . 

I I. 1 

Each of these categories w i l l  be discussed separately s%ar%ing with second order normaliza- 

tion. 

2nd Order Normalization 

Let us represent a linear Hamiltonian system of dimension 2n with a periodic time 

3 



(11.4) 

dependency by 

Gf = A(t)w, A(t + 2n)  A(t) . 
Then there exists a canonical change of variables 

w = P( t )Z f  P(t + 277) = P(t) I (11.5) 

such that 

2 1 Bz, (I I. 6) 

where B i s  a constant matrix, i f  the characteristic exponents associated with (11.4) are 

distinct. 

By Floquet theory, [ lo]  , the fundamental matrix @(t) 

represented as 

of  (11.4) with @(O) = I, can be 

(t) = P(t) exp (Bt) , (11.7) 

where 

o nd 

P(t + 2 n )  = P ( t )  . 
The change of variables (II.5)gives ( I  I .6). As the characteristic exponents of  our system 

are distinct, it can be shown, [ 11 3 , that there exists an S such that 

S I 1  BS = D , 

where D i s  diagonal. Furthermore, as we have a Hamiltonian system, the eigenvalues of 

D are . . . ,un,-ol,. . . ,-o . By applying the linear, canonical change of vaniables 
1’ n 

w = P ( t )  Sr , 

where 

r‘ = (plr P,, q l f  q2)  and w‘ = ( X l Y )  , 

4 



it follows readily that the equations defined by H take the form 

i= D r  +... . (I1 .8) I 

Thus in the new variables, we have, by a linear transformation t o  real form 

w A 0  
H = $(p: + qz) + f (pz + qz)  + ... 

Equations ( 1  1 .8) are now integrable i f  terms of degree two and higher are neglected. This 

linear approximation i s  good over some fixed finite time interval i f  we restrict ourselves to 

a sufficiently small neighborhood of the equilibrium point. 

II .2 Higher Order Normalization 

The next step in the analysis i s  to consider the higher order normalization procedure. We 

assume that H has been normalized up to degree s - 1 and introduce a canonical trans- 

formation from the old variables (x,y) to new variables (6 ,q) generated by a generating 

function W (s) (x,,. . . ,x , q,, . . . ,qn), a homogeneous polynomial of degree s. The 
n 

transformation i s  given (implicitly) by 

- aW (s) 
Y; - rIi i- - ax. 

I 

(III .9) 

The idea i s  to  choose W(') (that is, the coefficients of the polynomial) i n  such a way that 

as many s-th order terms as possible are eliminated i n  the new Hamiltonian. 

I? ( t I f  .. .,enf q,,. . .,qn) i s  the new Hamiltonian, we have 

I f  

We expand both sides in Taylor series and find 

5 



(11.10) 

We now write H and r as sums of homogeneous polynomials: 

We equate terms o f  like degree in (11.10) and find 

so that the new Hamiltonian i s  normalized up to  order s-1 since i t  was assumed that H 

was. Equating terms of degree s in ( 1 1 .  lo), we have 

In view of ( l l . 3 ) ,  this can be written 

(XI" ll) 

When coefficients of l ike terms are compared in the last equation, we obtain a system of 

linear equations in the coefficients of W(') with unspecified non-homogeneous terms sivce 

I"') i s  not known. It turns out that for s odd, the matrix. of this system i s  non-singular i f  

n 
C W. k. # o for integers k with o < C I k, 1 s N, so that the system can be solved ;-1 I I I 

6 
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with an arbitrary non-homogeneous term, i .e. we can find a W(’) so that (11.11) i s  satis- 

fied with r(’) 0 .  For even s the matrix does turn out to  be singular. In  this case,. we 

can determine W(’) so that (11.11) i s  satisfied with r(’) a polynomial of degree s/2 i n  

the variables (x? + q f )  with known coefficients. Thus the new Hamiltonian i s  normalized 

up to  order s. The higher order terms in r are then found by coefficient comparison in 

(II. lo), since now W(’) i s  known. 

I I 

The following flow diagram of Figure 1 illustrates the process used for higher order 

normalization. 

7 



HIGHER ORDER NORMALIZATION FLOW DIAGRAM 

Hamiltonian IIH" Normalized to  

Order (IS- 1). 

Select Terms from I'H" o f  Homogeneity Less than or 

Equal to  (IS-1). Lable This Series "G".  
I 

r 
Determine Generating Function "W I' and New 

Hamiltonian of Homogeneity (IS). Lable This 

Series "C ' I  . 

* N = N + l  

I f  N > Maximum Homogeneity The 

Process i s  Complete - 

Using "H", "G" and "W" and The Taylor Program, 

Obtain New Hamiltonian of Homogeneity "N". 

FIGURE 1 

-I 
I 
I 
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1 1 1 ,  NUMERICAL IMPLEMENTATION 

In general 

in the form 

the Hamiltonian i n  the neighborhood of  a periodic solution may be represented 

v 1  + + V a n  = 2  

where the coefficients are periodic functions of time. The first step in the normalization 

process i s  to reduce the periodic matrix of the linearized system derived from the Hamiltonian 

to a constant matrix in real normal form. The resulting Hamiltonian then has the form 

V l +  . . . tv  = 3 
an 

which i s  suitable for higher order normalization. 

The following programs are used to automate the entire process for both the second order and 

higher order normalizations. 

I I I  . 1 Symbolic Technique 

Throughout the programs a special technique i s  used for the handling of series terms or 

matrix elements which are series. Three arrays(NC1 I C1, IC1) are used to completely 

specify either condition. 

1) NC1 - 
2) C I  - 
3) IC1 - 

Used to identify the number o f  terms in the series or in the matrix element. 

Contains the coefficients of each term in the series, 

Logical definition of each term where the description variable i s  in 

packed form by b i t  designation. This term may appear i n  either of 

two forms: 



1 . 7 exponential and one time term, i ,e.:  

KT 
7 

... K a 
K 

1 
K 

7 
... J I J  1 J a .  

L = J - 1  , J 7 
ctKT exp I(-l)  k Kk t , 

- 

k=l 

which i s  expressed in packed form as 

35 34 33 ... 28 27-23 22-20 ... 7-5 4-1 

where 

0, c real 

1, c imaginary . 

KT = exponent of the time term. 

0, for positive exponential time dependence 

1 , for negative exponential time dependence, 
J k =  { 

k = l ,  ..., 7.  

K = positive integer, less than or equal to 31 , k 

k = 1 ,  ..., 7. 

1 
I 
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2. one exponential and six spatial terms, i .e.  

I J  

which i s  expressed in packed form as 

L 
5 6 

L L 
3 4 

L 
a 
L 

1 
K L 

35 34 33-25 24-21 20-17 16-13 12-9 8-5 4-1 

where 

0, c real 

1 ,  c imaginary 

0, for positive exponential time dependence 

1 , for negative exponential time dependence. 
J ={ 

K = positive integer, less than or equal to 63. 

L = exponent of space coordinate x k = 1 , . . . , 6 .  k k '  

1 1  



1 AEROSPACE RESEARCH C E N T E R  G E N E R A L  PRECISION SYSTEMS INC. 

X = A(t) X 

or 

n 
k a H  

x, =(-U - =I Q k j  XJ  
L a X k  j = 1  

I 

={!+ 1 ,  f odd . 
6 - 1 ,  even , ~ = l ,  ..., n , 

where n i s  the number of dependent variables, n 6 . 

2. The coefficient array A(t) i s  separated into discrete exponential orders of time. 

A(t) i s  a matrix containing four exponential and no spatial terms. 

A(t) = A(0) + A( l )  + . . .+ A(N) 

3. C and C-' are found where the transforrhaticm of coordinates i s  

X = C Y  , 

where Y represents the coordinates in which A(0) i s  diagonal, and C i s  the 

12 

I 

~ I i l l .  2 Program Descriptions 

~ 

Program No. 1 

j This program determines the system of I inear differential equations associated with the 

Hamiltonian as well as computing i t s  matrix of eigenvectors. 

The functions performed by the program are as follows: 

1 ,. Select the second order terms from the original Hamiltonian and set up linear differential 

equations in matrix form: 

1 
I 
I 
1 
I 
1 
1 
8 
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Program No.  1 (continued) I 
matrix of eigsnvecton of A(0) where C-l A(0) C diagonalizes A(0). I 

I 
I 
I 
I 
I 
I 
I 
I 

4. The matrix B = C-’ A(t) C is also computed. 

Supporting Subroutines 

1 .  AMAT 

2. C O M I N  

3 .  COMOP 

4 .  C O N V  

.i. CCUBIC 

6 .  DQRTIC 

7 .  EIGEN 

8 EIGVAL 

9 .  EIGVEC 

1 C .  ICEI~IT 

i i  ICEN:I 

12. LINMAT 

13. MATIO 

14. MATMUL 

15. MATOPl 

16. MATPRT 

17. PROOT 

18. SERDET 

19. SERIO 

20. SEROP 

21. SEROPl 

22. SERPRT 

I 
I 
I 
I 
I 
I 
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Input 

1. 

2 .  NH - Number o f  terms in  the time-dependent Hamiltonian series. 

NIP(I), I = 1 , 72 - Print control where I represents the subroutine number. 

Series i s  i n  the form of 1 exponential and 6 spatial terms, 

1, Series i s  i n  the form of 7 exponential and 1 time term. 
3 .  iSET(2) = 

4 .  H - Coefficients of the Hamiltonian series. 

5. IH - Logical definition of a term in the Hamiltonian series. 

used for this description: 

a) 
I =  

C) K - 

d) Lk- 

Printed Output 
~~ ~ 

1 .  NH 

H 

IH 

2 .  XLAM 

3. NAM 

AM 

IAM 

4 .  NBM 

BM 

I BM 

coefficient c i s  real e: coefficient c i s  imaginary 

0, for positive exponential time dependence 

1 , for negative exponential time dependence 

integer multiplying the time in  the exponential. 

Exponent of the k th  spatial coordinate, k = 1, 

i 

Input Hamiltonian series. 

Eigenvalues of the A(0) array. 

The following terms are 

. . ,  6 .  

A(t) array. Matrix type i s  7 exponential and one time term. 

Constant B array. Matrix type i s  7 exponential and one time term. 

I 
1 
I 
1 
I 

14 
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5. NCM Eigenvector array C . Matrix type i s  7 exponential and one 

CM time term. 

I CM 

6. NClM 

CIM 

IClM 

Inverse of the eigenvector matrix. 

Punched Output 

1. NAM 

AM 

I AM 

2. NBM 

BM 

I BM 

3. NCM 

CM 

I CM 

4. NClM 

CIM 

IClM 

A(t) array. Matrix type i s  7 exponential and one time term 

Constant B array. Matrix type i s  7 exponential and one time term. 

Eigenvector array C Matrix type i s  7 exponential and one time 

term. Each element i s  in complex form. 

Inverse of the eigenvector matrix. 

15 
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Ptwram No. 2 

This program solves the linear system resulting in the characteristic matrix 0 (t). 

The linear differential equation 
a 

Y = B(t)Y , 

where B(0) i s  a constant diagonal matrix with imaginary diagonal elements, i s  solved in 

symbolic form, yielding the matrix (YM). Each element in B can be expanded in a Fourier 

series, so that 

B = B(0) + B(l) + B(2) . . . . 
The following recursion technique i s  used to obtain the solution: 

;(1) = B(0) Y(1) 

+(2) = B(0) Y(2) + B ( l )  Y(l) 

+(3) = B(0) Y(3) + B(l) Y(2) + B(2)Y(1) 

;(NORD+l) = B(0) Y(NORD+l) + B(l)Y(NORD) + . . . , 

where NORD = number of recursion steps permitted after solution of the first linear equation. 

The i th column of (YM) represents the i th independent solution. 

A general solution for Y i s  

Y = (YM)D, 

where D is  a constant matrix. 

The solution for X in the original equation, 
6 

X = A(t)X , 

X = C Y  = C(YM)D. 
IS 

17 



18 
i 

c 

+ i t  2.351 . 0 4 i  e 

+it + .05e  

.07 e - i t  -2.351 

- + .08e-it 

Program No. 2 (continued) 

At t ime zero, (YM) is the identity matrix and i t  i s  desirable to have X become the identity 

matrix. Accordingly, we set D = C -' . Then &(t )  = C(YM)C-' . 

As an example of the results obtained by this procedure the following two-dimensional 

problem i s  solved up to first order. 

The solution for the characteristic matrix Qi (t) is; 

+it -2.35i t 

+2.35it 

-.0108e e 

+. 0108 e 

+it - .05 ie  

+it +2.5it 

2.34it 
e 

+ .05 ie  e 

?? (t) = 
-it +2.35it . o8 e-2. 35 i t  

-.0189ie e 

-2.35it 1 + . o w  i e  
-it -2.35it - .08e  e 

Each column of CP (t) represents an independent solution for the Y vector. 

Due to the excessive storage requirements necessary for the recursion process, various arrays 

were Stored on the Univac FH880 drumiin the form of simulated scratch tapes. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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Proaram No. 2 

Supporting Subroutines 

1. CONV 

2. IDENT 

3. IDENTI 

4. MAT10 

5. MATOPl 

6. MAT PRT 

Input 

1 .  NIP(I) I = 1 ,  72 

2. NBM 
BM 

I BM 

3. NCM 
CM 

I CM 

4. NClM 
CI M 

lClM 

5 .  NORD 

Printed Output 

1.  NBM 
BM 

I BM 

2. NCM 
CM 

I CM 

7. SDlFl . 

8. SEROP 

9. SEROPl 

10. SERPRT 

1 1 .  SINT1 

12. YMAT 

Print control where 1 represents the subroutine 
number. 

B array from Program No. 1 . 

Eigenvector array C from Program No. 1 . 

c-I from Program NO. I .  

Order to which the recursive solution for YM 
in subroutine YMAT i s  to be computed, 

Input matrix from Program No.  1 

Input eigenvector matrix from Program No. 1 ,, 

19 



Progrdm No. 2 

Printed Output (continued) 

3. NClM 
CIM 
PClM 

4. NYM 
YM 
IYM 

5.  NPHIM 
PHlM 
IPHIM 

Punched Output 

Input inverse of the eigenvector matrix from 
Program No. 1.  

YM Array identified in previous description. 

Characteristic matrix @ (t) . 

\. 

\ 

1 .  XLAM(1) , 1 - 1 ,  13 

2. NPHIM 
PH'IM ' 

IPHIM 

20 

Diagonal elements of  the BM matrix. 

a(t), Matrix type is 7 '  exponential and one time term. 

I 
I 
I 
I 
1 
1 
I 
1 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 

P. a 

n 

0 m 
0 n 

Y 

21 



AEROSPACE RESEARCH C E N T E R  G E N E R A L  PRECISION S Y S T E M S  INC. 

Program No. 3 

By Floquet theory the characteristic matrix @(t) i s  defirjed as: 

where P(t) is the periodic coordinate transformation matrix and B i s  a real constant matri.i 

defined as 

The following mathematical procedure i s  used to evaluate the logarithm of a real matrix: 

Find the eigenvector matrix C of the 9 (2n ) matrix as well as the inverse of 

C , denoted by CI . 
Form the complex diagonal matrix 

Take the logarithm o f  the principal values of the diagonal elements in the D matrix. 

The elements of D are in the form x + L y  which i s  converted to 

D = CI* A *  C . 

a 

R e L 9  , o s ; e g 2 r .  

s 

G =loge R e" = loge R + I e 

The desired matrix i s  C *  G CI , I .e. 

c [log (G-l o(2n )  c ) 1 
= T i  e 

I 
I 
I 
1 
I 
i 
1 
I 
I 
I 

- Bt  
Now P(t) = @(t) e 

I 
I 
I 



I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
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Program No.  3 evaluates 

-Bt -t (SI B *  S) 
E(t) = e  = S [ e I S 1  I 

where S i s  the eigenvector matrix of B , and S I  denotes the inverse of S e 

Supporting Subroutines 

1. C0MI.N 

2. COMOP 

3. CONV 

4. DCUBIC 

5. DQRTIC 

6. EIGEN 

7. EIGVAL 

8. EIGVEC 

9. E M A T  

10. IDENT 

1 1 .  IDENTI 

12. LINMAT 

13. MATI0  

I tlpu t 

1 .  NIP(!), I = 1, 72 

2. XLAM(I) , 1 = 1, 3 

3. NPHIM 
PHlM 
IPHIM 

14. MATLOG 

15. MATMUL 

16. MATOPI 

17. MATPRT 

18. PROOT 

19. SERDET 

20. SERNUM 

21. SEROP 

22, SEROP! 

23. SERPRP 

Paint control where B represents the 
subrountine no 

Eigenvalues of @(t) matrix from 
Program No. 2, 

@Qt> array from Program No. 2. 
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Printed O u t w t  

1.  XLAM(1) , 1 = 1 ,  3 

2. NPHBM 
PHPM 
IPHIM 

3. XLAME(B) , I = 1 ,  3 

4. NEM 
EM 
D EM 

5 .  BB 

6. BLAM 

7. CB 

Punched Output 

XLAM 
XLAME 
EM 
BLAM 
CB 

Eigenvalues of characteristic matrix @(t) 
from .Program No a 2. 

@(t) matrix from Program No. 2. 

Eigenvalues of exponential array E(t) . 
E(t) array . 

Real constant matrix B described in  program 
description. 

Eigenwlues of the constant B m t r i x .  

Eigenvector of the constant B matrix. 

Described in printed output. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
8 
1 
I 
I 
I 
I 
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Program No .  4 

This program performs the multiplication of a(t) 
P(t) 
period 27r 

and E(t) to produce the periodic rna>frtri>c 

The resultant series i s  periodic with and expands the matrix I P(t) in a Fourier series 

Supporting Subroutines 

1, CONV 

2. IDENT 

3. PDENTI 

4. MATDO 

5 .  MATOPl 

6. MATPRT 

Input 

1 .  NIP([), I = 1 ,  72 

2. XLAM(J), J = 1,3 

3. XLAME(J) , 9 = 1,3 

4. NPHlM 
PHlM 
lPHlM 

5 .  NEM 
EM 

I EM 

7. SDIFI 

8. SEREXl 

9 .  SERNUM 

10. SEROP 

1 1 .  SEROA 

12. SERPRT 

13. SINTl 

Print control where I represents the 
subroutine number. 

Eigenvalues of the j h  (t) array from 
Program No .  3. 

Eigenvalues of the E(t) array from 
Program No. 3. 

Q (t) array from Program No. 2. Matrix 
type i s  7 exponential and one time term. 

E(t) array from Program No. 3. Matrix 
type is  7 exponential and one time term. 
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Program No .  4 

1 npu t (continued) 

6. NEX 

Printed Output 

1 .  NEX 

2. XLAM 

3. NPHIM 
PHlM 
IPHIM 

4. XLAME 

5.  NEM 
EM 
I EM 

6. NPM 
PM 

I PM 

Punched Output 

1 .  NPM 
PM 
I PM 

Degree of expansion maintained in 
generation of the periodic matrix P(t) . 

Degree maintained in the periodic matrix 
expansion. 

Eigenvalues of  the @ (t) matrix. 

Characteristic matrix &(t) from Program No .2. 

Eigenvalues of the exponential array E(t) . 
Exponential array E(t) from Program No .  3. 

Periodic matrix P(t) . 

Periodic matrix P(t). Matrix type i s  one 
exponential and 6 spatial terms. 
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Program No.  5 

This program determines the transformation necessary to put the constant portion of the 
second order terms i n  real normal form. The result of this program i s  a matrix T (t) 
representing the total transformation from the original form to real normal form. 

The detailed functions that are performed are: 

1 . 
2. 

The matrix DEL which preserves the canonical property i s  obtained. 

The matrix RNF that transforms a complex normal Hamiltonian into real normal 
form i s  obtained. 

The resultant transformation T (t) that normalizes the Hamiltonian to second 
order i s  found: 

3. 

T (t) = P (t) J CB * DEL R N F  

Supporting Subroutines 

1. CANMAT 

2. COMOP 

3. CONV 

4. IDENT 

5 .  IDENTl 

6. MATIO 

I npu t - 
1. NIP(I), I = 1,72 

2. NPM 
PM 

I PM 

3. CB 

Printed Output 

1. NPM 
PM 

I PM 

2. DEL 

3. R N F  

7. MATMUL 

8. MATOP 

9 .  MATPRT 

10. SEROP 

11. SERPRT 

Print control where I represents the subroutine number. 

Periodic transformation matrix P (t) from Program No. 4. 

Matrix of eigenvectors of the B array from Program No. 3 

Input periodic matrix P (t) from Program No. 4. 

Matrix which preserves the canonical property 

Matrix which transforms a complex normal Hamiltonian 
into real normal form. 
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Printed Output (cont 'd) 

4.  NTM 
TM 

I TM 

Punched Output 

NTM 
TM 

I TM 

30 

Resultant transformation matrix T (t). 

Total transformation matrix. Matrix type i s  one 
exponential and 6 spatial terms. 
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2.  NTM 

I TM 
I TM 

Program No. 6 

The functions performed by this program are as follows: 

The Z series i s  obtained where the coordinate transformation that removes time 
dependence from second order terms i s  

1 . 

X = T ( t ) Z .  

2 ,  The above linear transformation i s  substituted into the original Hamiltonian and 
yields a Hamiltonian normalized to second order i n  real normal form. 

The old variables X are obtained in terms of the new variables Z and the new 
variables Z are obtained i n  terms of the old variables X. 

3, 

Supporting Subroutines 

1. COMIN 

2. COMOP 

3. CONV 

4. IDENT 

5. IDENTl 

6. LINMAT 

7. LINPRA 

8. MAT10 

Input 

1.  NIP(I), I = 1,72 

2. ISET (4) 

3. N H  
H 

- 

IH 

TM 
I TM 

4. NTM 

Printed Output 

1.  NH 
H 

IH 

9. MATMUL 

10. MATOP 

11. MATPRT 

12. SERIO 

13. SERNUM 

14. SEROP 

15. SERPRT 

16. STRAN 

Print control where I represents the subroutine number. 

Maximum t ime order carried. 

Original Hamiltonian. 

Linear time dependent coordinate transformation from 
Program No. 5. 

Init ial  Hamiltonian series. 

Total transformation matrix T (t) from Program NO. 6. 
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P r i  nt ed Output (cont 'd) 

3. NG 
G 

IG 

4. NG 
G 

IG 

5. NH 
H 

6. NH 
H 

Punched Output 

1. NG 
G 

IH 

IH 

IG 

2 .  x 
3.  z 

New Hamiltonian normalized to second order. 

New Hamiltonian after trivial second order terms 
have been removed. 

Old coordinates X expressed i n  terms of the new 
coordinates Z . 
New coordinates Z expressed in  terms of the old 
coordinates X . 

New Hamiltonian normalized to second order. 

Old coordinates i n  terms of the new coordinates Z. 

New coordinates i n  terms of the old coordinates. 
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Program No.  7 

This program computes the generating function necessary to normalize the Hamiltonian to 

the next higher order. A basic requirement of the normalization process i s  the expansion 

of polynomials by Taylor series. In particular, consider the expansion about ( x ,  y) of 

where "A" and "Bll are series and "x" and "y" are portions of the total coordiinate 

state vector. This series i s  given by 

where ''ml' i s  the order of the expansion and "ndif" i s  the number of  components of the 

vector. An additional constraint on the formulation of the expansion i s  that there i s  I I  I I  x 

a need for only a portion of the total expansion, namely one homogeneity level, so this 

must be selected without the computation of the entire result. 

As an example consider, 

Ot 3 2 0 0 
x 1  x2 x3 x4 

+ 5. e I 
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O t  
0 =  + 3 .  e 

Ot + 10. e 

- 
with (1) - Y l ( 1 )  

(2) - Y l ( 2 )  
- 

- 
(3) - y1(3) 

The resulting series of homogeneity 4 i s  

O t  C =  + 4 2 .  e 

O t  

O t  

O t  

+ 20. e 

+ 18. e 

+ 3. e 

O t  + 18. e 

1 2 0 
x 1  x2 x3 

2 1 0 
x 1  x2 x3 

1 

2 
x 1  

x 1  

x1 

x 1  

3 

4 

0 

3 0 
x2 x3 

2 0 
x2 x3 

1 0 
x2 x3 

x2 x3 

x2 x3 

0 0 

4 0 

The new Hamiltonian i s  also evaluated i n  the new coordinates, 

dinate transforma tion. 

Consider as an example, the series 

- 3 i t  2 0 0 
x 1  x2 x3 H(xl, x2, x3, x4) = + 2 i  e 

+ 3 i t  1 0 0 
x 1  x2 x3 + 3  e 

and consider the transformation defined by 

0 
x4 

x4 
0 

I 

0 

0 

x4 

x4 

x4 

x4 

x4 

0 

0 

0 

i .e. a basic series coor- 

1 
x4 

x4 
2 



I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 

I 

- 3 i t  1 0 0  0 
Y 1  Y 2  Y3 Y4 x l = + 3 i  e 

+ 5  2 i  t 
e 2 

Y l  
0 

y2 
0 

Y3 
0 

Y 4  

x2 = + 1  e O i  t 0 0 0 0  
Y 1  Yo Y3 y4 

- 3 i t  0 0 
Y,. Y z  x3 = + 3 i  e 

2 i t  0 0  
+ 5  e Y 1  Ya 

- 3 i t  0 0. 
x4 = + 3 i  e Y 1  Ya 

2 i t  0 0  
+ 5  e Y1  Y 2  

In the new coordinates, 

1 0 
Y3 Y4 

2 0  
Y3 Y4 

0 1 
Y3 Y4 

0 2  
Y3 Y4 

n d  -12i t 
H ( Y ~ ,  yar Ya8 y4) = + 5 4  e 

-90 i e 

-180i  e 

-300 e 

-150 e 

+250i e 

- 81i  e 

-270 e 

+225i e 

-135 e 

+450i e 

t375 e 

-7 i  t 

-7 i  t 

- 2 i  t 

-2 i t 

+3 i  t 

- 6 i  t 

- l i t  

+ 4 i  t 

- l i t  

+4 i  t 

+ 9 i  t 

1 
Y 2  Y3 y4 
0 0  2 

Y 1  

0 0 2  
Y2 Y3 y4 

2 
Y l  

1 0 0  3 
Y l  Y2 Y3 Y4 

3 0 0  2 
Y I  Y 2  Y3 Y4 

4 0 0  1 
Y l  Y z  Y3 Y4 

4 0 0 2 
Y l  Yz  Y;a Y4 

0 0 2  1 
Y l  Ya  Y3 Y4 

1 0 0 3  
Y l  Y 2  Y3 Y4 

0 0 4  
Y l  Y 2  y3 y4 

1 

2 0 0 2  
Y l  Y 2  Y3 Y4 

2 0 0 3  
Y1 Y2 Y3 Y4 
2 0 0 4  

Y l  Ya Y3 Y4 
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This process i s  repeated unti l the desired level of normalization i s  achieved. The time de- 

pendent Hamiltonian used for input must be normalized to second order. 

l 
I 

Su ppo rt i ng Su brout i nes 

1 .  GEN 

2. YDENT 

3. IDENTB 

4. NORM% 

5. SERSO 

6. SEROP 

7. SERPRT 

8. STRAN 

9 .  TAYl 

10. PAY2 

lnput - 
1. NIP(!)t B = 1,72 

2. RNORM 

3. MAXHOM 

4. NH 

w 
SH 

Print control where 1 represents the subroutine number. 

Normalization level of the in i t ia l  Hamiltonian. 

Maximum order to which the Hamiltonian w i l l  be normalized. 

Oni,tial Hamiltonian normalized to second order or higher. 

Printed Output 
- 

1. 

2. 

3 .  

4. 

5. 

6. 

38 

~ 

!NORM 

MAX HO M 

OMEGA 

NH 

H 

OH 

NW 

W 

SW 

NG 

G 

IG 

Normalization level of input Hamiltonian, usually 2. 

Maximum order to which the Hamiltonian w i l l  be normalized. 

Constants multiplying the second order terms i n  the input Hamiltonian. 

Input Hamiltonian. 

Generating function for Hamiltonian normalized to one higher order. 

Hami I tonian normalized to higher order. 
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Punched Output 
~~ 

1 .  NW 

W 

IW 

2. NG 

G 
IG 

Generating function for the Hamiltonian normalized to one higher 

order. 

Hamiltonian normalized to one higher order. 
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Program No. 8 

This program reduces the generating functions to simple coordinate transformation series. 

The result of the Birkhoff normalization process is  a sequence of generating functions which 

are time dependent polynomials dependent upon combinations of the old and new variables. 

In order to make direct use o f  these results i n  the area of trajectory prediction, the gen- 

erating function must be operated on so as to produce independent series relating the old 

variables to the new ones and vice versa. This operation, known as an inversion, consists 

of a set of substitutions designed to evaluate one homogeneity level of the desired series 

a t  a time. The substitution i s  continued until the maximum order of the series i s  achieved. 

As an example, consider the following generating function; 

w = 1xq2 + 1x2q 

where X,Y are the old variables and &q are the new variables. Inversion of function 

W up to third order results in the following four series: 

X = lelqo - 2 t l q l  - 14 2 0  q + 4 t 1 v 2  + 6E277' + 2E3q0 

6 = 1xly0 + 2 x l y l  t 1x2yo - 2XlY2 - 4X2Y1 

41 



Supporting Subroutines 

1. $DENT 

2. !DENT4 

3. DNVER 

4. SERIO 

5 .  SEROP 

6. SERPRT 

7. STRAN 

input 

1.  NIP([), I = 1/72 

2. NHMAX Maximum homogeneity retained in  the series representing 

- 
Print control where I represents the subroutine number. 

coordinate transformations. 

3. ISET(4) Maximum time level carried. 

4. NW 

W 

IW 

Generating function from Program No. 7. 

Printed Output 

1. NHMAX 

2. NW 

w 
IW 

3. NS 

S 
OS 

4. NS 

S 
IS 

PuncheG Output 

1. x 
2. z 

42 

Maximum homogeneity retained i n  the series representing the 

coordinate transformations. 

Generating function from Program No. 7. 

Old coordinates X i n  terms of new coordinates Z .  

New coordinates Z in  terms of old coordinates X . 

Old coordinates i n  terms of new coordinates. 

New coordinates i n  terms of old coordinates 



1 
I 
I 
i 
I 
I 
1 
I 
I 
I 
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I 
I 
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Program No .  9 

This program combines the individua 

AEROSPACE RESEARCH CENTER GENERAL PRECISION SYSTEMS INC. 

coordinate transformations into one total transformation. 

4. SEROP 

5 .  SERPRT 

6. STRAN 

Supporting Subroutines 

1. IDENT 

2. DDENTl 

3. SERIO 

Input 

1 .  NIP(!), I = 1 ,  72 

2. N 

3. NSUB 

4. NHMAX 

5. x 

6. Z 

Printed O u t w t  

1 .  N 

2. NSUB 

Print control where I represents the 
subroutine number. 

Number of components in the state vector. 

Number of individual transformations to 
be combined. 

Maximum homogeneity to  be retained. 

D ndi vidua I coordinate transformation series 
relating the old variables to the new. 
From Program No .  6 and Program No .  8 .  

I ndividua I coordinate transformation series 
relating the new variables to the old. From 
Program No .  6 and Program N o .  8 . 

Number of components in the state vector. 

Number of individual transformations to be 
combined. 

I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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Program No. 9 (continued) 

3 .  NHMAX 

4. NX 
X 

I X  

5. NZ 
Z 

IZ 

6. N.Y 
Y 

IY 

7. NY 
‘Y 

! I  Y 

Punched Output 

Maximum homogeneity retained, 

Initial X codrdincrtes. 

Initial Z coordinates, 

Combined X coordinate transformation, 

Combined Z coordinate transformation . 

1 .  x 

2. z 

Totaled old coordinates in terms of the 
new coordinates 

Totaled new coordinates in terms of the old 
coordinates. 
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Program No. 10 

This program numerically evaluates the solution of the normalized Hamiltonian equations, 

solved symbolically. 

The Z coordinates ( E i I  vi) are evaluated after first calculating the init ial  values 

( E i o  I Vi0)  * 

si = ti, cos (XLAM)i t +r)  sin (XLAM)i t io 

- Vi - - sin (XLAM)i t +q. LO cos (XLAM)C t . 

The X coordinates are then evaluated at a specific value of t . 

Supporting Subroutines 

1 .  HAMNUM 

2. IDENT 

3. IDENTl 

Input 

1. NIP(I), I = 1,72 

2. N V  

3. NT 

4. TT 

5. XOC(I) 

6. XLAM 

7. N X  

X 

IX  

8. NZ  

Z 

IZ 

4. SERlO 

5 .  SERNUM 

6. SERPRT 

Print control where I represents the subroutine number. 

Number of components in the X vector. 

Number of t ime points into which the total time i s  divided. 

Total problem time. 

Initial condition for the i- component. 

Three eigenvalues of the linear system 

th 

X coordinates. 

Z coordinates. 
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Printed Output 

48 

1 .  NV  

2. NT 

3. TT 

4. XOC(I) 

5. XLAM 

6.  N X  

X 

IX 

7. NZ 

Z 

IZ 
8.  DR 

Number of components in the X vector. 

Number of time points into which the total time i s  divided. 

Total time. 

Initial condition for the t- component. 

Three eigenvalues of the linear system. 

. th 

X coordinates. 

Z coordinates. 

X coordinates numerically evaluated at  each time point. 
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Program No.  11 

This program numerically integrates the differential equations of a time-dependent Hamiltonian 

system. A Runge-Kutta numerical integration procedure i s  used. 

Supporting Subsowt ines 

1 .  EQUAT 

2, BDENT 

3. !DENT1 

4. RKI 

Input 

1 .  NIP(!), I = 1, 72 

2. N V  

3, NT 

4 .  NC 

5 .  TT 

6. XOC(I) 

7. NH 
H 
IH 

Printed Output 
~~ 

1 .  N V  
NJ 
NC 

T T  

NH 
H 
IH 

XOC(I) 

5 .  SERlO 

6. SERNUM 

7. SEROP 

8.  SERPRT 

Print control where I represents the 
subroutine number. 

Number of components in X vector. 

Number of time points into which the total 
time i s  divided a 

Number of  integration cycles between print 
points. 

Total time. 

Init ial  condition of the i th component. 

Hami Itonian series 

Input data. 



AEROSPACE RESEARCH CENTER GENERAL PRECISION SYSTEMS INC. 

Program No. 1 1  (continued) 

Printed Output 

2.  XDOT 

3.  x 

Print-out of derivatives of H. 

Print-out of X coordinates ewluated at 
time points. 
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1 1 1 .  3 Subroutines 

Routine 

1 .  AMAT 

2. CANMAT 

3. COMIN 

4. COMOP 

5. CONV 

6. DCUBIC 

7. DQRTC 

8. EIGEN 

9. EIGVAL 

10. EIGVEC 

11. EMAT 

12. EQUAT 

13. GEN 

14. HAMNUM 

Description 

Transforms a Hamiltonian system into a set of t ime dependent linear 

differential equations. The linearity of the differential equations 

i s  assured by using only the 2nd order terms i n  the Hamiltonian. 

Evaluates the matrix which i s  used in  the coordinate transformation 

of a Hamiltonian to preserve the canonical property i n  the new 

variables. 

Finds the inverse of a complex matrix using a Gaussian reduction 

technique. 

Performs basic complex arithmetic such as multiplication, division. 

Transforms a series into a matrix element or vice-versa. 

Obtains the roots of a cubic polynomial equation where the 

coefficient of  X i s  1. 3 

Obtain the roots of a quartic polynomial equation where the 

coefficient of  X i s  1.  4 

Finds the eigenvalues and eigenvectors of a real matrix. 

Finds the eigenvalues of  a complex matrix. 

Finds the eigenvectors of a complex matrix when the eigenvalues 

are available. 

Evaluates the exponential array E(t) which i s  used to multiply the 

characteristic matrix. 

Determines derivatives for the Runga-Kutta routine. 

Determines the generating junction of order I S  for a Hamiltonian 

of order IS-1. The IS homogeneity part of the new Hamiltonian 

i s  a I s 0  computed. 

Performs the numerical evaluation of the X and Z coordinates at a 

specified time value. 
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Routine 

15. IDENT 

16. IDENT1 

17. INVER 

18. LINMAT 

19. LINTRA 

20. MATLOG 

21. MATMUL 

22. M A T 1 0  

23. MATOP 

24. MATOPl 

25. MATPRT 

26. NORM 

54 

D escr i pt i on 

Identifies series terms from the logical definition variable or forms 

the logical definition from specified bit variables. The terms must 

be of the form: 6 spatial and 1 exponential term. 

Same description as IDENT but must be used for variables of the form 

7 exponential, 0 spatial and 1 t ime term. 

Accepts generating functions i n  terms of x and q and performs an 

inversion of variables to obtain 6 and 71 in terms of x and y or 

vice-versa. 

Solves a linear system of equations o f  the form AX =B. 

Performs a linear transformation of the spatial coordinates in a series. 

Finds the logarithm of a real matrix. 

Multiplies two complex matrices. 

Punches or reads a matrix where each element i s  a series. 

Performs matrix operations on square matrices where each element 

i s  a power series. Performs addition, subtraction, multiplication, 

and transfer from one array to  another. Each element must have 

terms in the form specified by IDENT. 

Performs matrix operations such as addition, subtraction, multiplication, 

transfer, and selection of a particular time dependent order. Each 

element must have terms in  the form specified in IDENT1 . 
Prints out a matrix where each element i s  a series. 

Determines a Hamiltonian normalized to  order IS when a 

Hamiltonian normalized to  order IS-1 i s  available. The generating 

function relating the old variables t o  the new variables i s  also 

included in the output. 
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Routine Description 

27.  PROOT 

28. RKI 

29 .  SDlFl 

30.  SERDET 

31. SEREXl  

3 2 .  SERIO 

33.  SERNUM 

34. SEROP 

35.  SEROPl 

36.  SERPRT 

37.  S I N T l  

38.  STRAN 

39.  TAYl 

Finds the roots of a polynomial with real coefficients. 

Performs a Runga-Kutta integration. 

This subroutine differentiates a series of the form - 7 exponential 

0 spatial and one time term. 

Finds the determinant in series form of a matrix in which each 

element i s  a series. 

Performs a Fourier expansion of a series containing non- 

commensurate eigenvalues. The resultant series is  periodic 

with a period of 2n . 
Punches or reads in a series. 

Computes the numerical value of  a series at a specified time point. 

Performs basic power series operations such as addition subtraction 

multiplication transfer selection of particular homogeneity 

truncation up to a particular homogeneity and differentiation. 

Each term i s  of  the form - 6 spatial and one exponential term. 

Performs basic power series operations such as addition subtraction, 

multiplication and transfer. Each term i s  of the form 7 exponentials, 

0 spatial and one time term. 

Prints out a series in a format that resembles the actual mathematical 

form. 

Performs the integration of a series of the form - 7 exponential 

0 spatial and one time term, from time zero to time T .  

Performs series transformations for Program 9 .  

Generates one expansion series of the Taylor expansion where the 

expansion term has the following form: 

2.. . 3" A a s  3B , m ndif ndif 

,=F 1(1)=1 &)=, atY,( l) l  a ''1 (n) * =J * - -  
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Routine 

40. TAY 2 

41. YMAT 

B = B(0) + B(1) + B(2) + .... 

I 
I 

Description 

Generates the entire series of  a particular type of Taylor expansion. 

The resulting series i s  composed of terms which a l l  have the same 

homogeneity. 

A Taylor expansion of the following form i s  considered: 

where A and B are power series. 

The orderof- a B  must be higher than the order of y .  
ax 

Solves the I inear time-dependent differential equation of  the form 

Y = BY where B can be expanded in a Fourier series of  the form: 
. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
E 
I 
I 
I 
I 

I V  APPLICATION TO ELLIPTICAL RESTRICTED THREE-BODY PROBLEM 

IV. 1 Model Description and Related Eauations 

The frame of reference for the planar elliptical restricted three-body problem i s  a rectan- 

gular coordinate frame that rotates about i t s  origin at the same speed as that with which the 

Earth and the Moon move i n  ell iptical motion about their barycenter. The origin of  this 

coordinate frame wi l  I represent the Earth-Moon barycenter, and these two masses, which 

w i l l  be designated m and m respectively, w i l l  be fixed in the coordinate frame i f  a 

unit of length i s  defined to be the distance which separates the Earth and the Moon. The 

equations of motion of a body m of insignificant mass i n  this coordinate system are [ 21 : 

1 2 

0 

au - .. 1 
x - 2 j . =  1 + e COS t ax 

au 
ay 
- 1 

1 + e COS t 
y + 2 i  = 

where the potential function i s  

m 

m + m  
a 

m =  I 

1 2 

and p,, are the distances between the body m and the massive bodies m and m 
Po1 0 1 2 

respectively, measured in units of the distance between the two massive bodies, e i s  the 

eccentricity of the ell iptical motion of m relative to m , and dots denote differentia- 

t ion with respect to the independent variable t , which here represents the true anomaly 

of the ell iptical motion of m 

v = 9 + x , the equivalent Hamiltonian system of equations i s  

2 l 

about m . If we introduce the variables u = A - y , 
2 1 
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aH ;= - 
au 

aH i / =  - 
av 

aH u = -  - 
ax 

with the Hamiltonian 
1 

1 + e cos t U(X, Y) H =8 (x" + y2 ) + Q (u" + V" ) + (uy - XV) - 

The origin i s  translated to the equilibrium point L by the linear transformations: 4 
u = - -  J5- 1 +pl, v = z  - m + p  x = h  -m+ql, y = ? + q 2 ,  

2 

ET 

The Hamiltonian in the neighborhood of the equilibrium point L (q = q  = p = p = 0) 4 1  2 1 2  

becomes: 

m + - ++ [q2 + q  (1-2m) +qz + K q 2  + m2 - m + 11 where B(q) = - 1 -m 
1 1  

P O  1 

where p 

m and m respectively. 

and po2 are the distances between the body mo and the massive bodies 
01 

1 2 

In implementing the numerical procedures, this Hamiltonian was expanded in  a Taylor 

I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 

series through the fifth order of homogeneity. This series in turn was expanded in  exponen- 

t ial  form (ei k h  ') to the second degree (k = 0 , - + 1, + - 2) i n  terms of the true anomaly 

t . The Hamiltonian contained, after the expansion, a total of 94 terms. 

In starting the 2nd order normalization the expanded Hamiltonian i s  truncated to second 

order. The truncated Hamiltonian for the reduced three body problem is:  

H = 0. 1244348731q2 - 0.626695381 q2 + 1 . 0 ~  q - l.Oql p2 
a 1 2  1 

+ 0.5p" +0.5$ -0.126939203q q 

+ [0.01029375q2 + 0.03088125$ + 0.3479241 1 q q ] [ e i  + e-i t] 

1 2 1 2  

1 2 1 2  
2 i  t + e-2i t l  + [ - 0.0002825634q2 - O.OOOR476903q~ - 0.0009550517q q ] [ e  

1 1 2  
I 
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IV. 2 Parameters and Trajectories 

The accuracy of the solution obtained by normalization i s  affected by three parameters - 
the order of normalization N , the number of steps i n  the recursive solution for the charac- 

teristic matrix S(t), and the highest degree k retained i n  the Fourier expansion of the 

transformation matrix P(t) . This latter parameter appears also i n  the expansion of the 

Hamiltonian i n  terms of the independent variable t (true anomaly), but there we always 

retain terms through the second degree in  k , as mentioned i n  section IV. 1. A suitable 

choice of parameters i s  selected on the basis of acceptable accuracy of solutions, consis- 

tent with computational capability of the digital computer that i s  used. To attempt to 

normalize the Hamiltonian to 5th or 6th order, with many steps i n  the recursive solution 

for @ and many terms retained i n  the Fourier expansion for P(t), would require too much 

core space on a computer, even for the UNIVAC 1108 which we use. Accordingly, we 

judiciously selected, after preliminary investigation, certain combinations of parameters. 

We then compared the resulting solutions with the trajectory obtained by numerically in- 

tegrating the same Hamiltonian equations which yielded the ''normalized" solutions. 

4 

At the outset, i t  became apparent that two recursive steps are necessary and also sufficient 

i n  the solution for the characteristic matrix a .  It i s  also necessary to retain some t-de- 

pendent terms in the Fourier expansion for P.  To ignore 

this time dependence i s  equivalent to neglecting the el l ipt ici ty of the motion of the moon 

about the earth. The effect of time-dependent (or k) terms i n  the Fourier expansion of P 

i s  illustrated i n  the trajectories of Figures 2 and 3. In Figure 2, the trajectory obtained by 

normalization, using as parameters k = 0 , N = 3, departs noticeably from the numerically 

integrated trajectory by the 17th day. In fact this normalized curve i s  identical to the 

trajectory obtained by numerically integrating the circular restricted three-body equations. 

By contrast, i n  Figure 3, the curve obtained by normalization, using as parameters k = 1 , 
N = 3 , does not depart from the numerically integrated trajectory unti l the 30th day, 

approximately. Very l i t t le increase in accuracy i s  gained by retaining terms containing 

k = 2 .  

That is, we must have k > 0 . 
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Pn the vicinity of the libration point L 
effect of nonlinear terms. 

Figures 2 and 3 is not at  a l l  evident when comparing the normalized trajectories of Figures 

3 and 4. In both of the latter curves, k = 1 ; only the order of normalization i s  different, 

and the resulting trajectories are almost identical. 

the time dependence i s  more prominent than the 
4 '  

The marked difference between the normalized trajectories of 

These effects of time dependence and order of normalization are apparently unchanged if 

the motion i s  expanded to a neighborhood about L 

neighborhood observed i n  Figures 2, 3, and 4. 

5, 6, and 7. Our earlier statement about gaining l i t t le  increase i n  accuracy by retaining 

terms containing k = 2 ,  i s  also true i n  the larger neighborhood. 

which i s  ten times the size of the 

This i s  evident i n  the trajectories of Figures 
4 

Before discussing the sources of errors in the normalized trajectories, we w i l l  conclude this 

Section by pointing out two principal reasons for using the normalization procedure. First 

bf all, of course, i s  the fact that the normalization process gives us approximate analytic 

;elutions of the dynamical system. The approximate trajectories are expressed i n  terms of 

power series with known coefficients. Thus the motion of a particle or space vehicle can 

be studied analytically and the position and velocity computed for any instant, without 

having to compute the prior history of  the particle. Qualitative behavior of the particle 

can be studied easily, to see the effects of changes in  init ial  conditions. Secondly, be- 

cause the independent variable appears explicit ly i n  the normalized solution, the time re- 

quired to compute normalized solutions i s  much less than the time required to compute 

corresponding trajectories by numerical integration of the equations of motion. In the 

normalized trajectories shown i n  the Figures 2-7, positions were calculated at 4-day in- 

tervals. Total computation time for the 80 days took about 3/4 of a minute, with varia- 

tions of 10 seconds or so for different parametric (k , N) conditions. By contrast, numer- 

ical integration of each trajectory required from 4 to 11 minutes, depending upon the step 

size used in  the integration. 

between step sizes of 3 hours (1 1 minutes total integration time) and 10 hours (4 minutes 

total itegration time). 

sive numerical integration, and i s  time consuming i n  itself. And of course i f  we desire 

to know only the location of the particle at the end of 30 days, for example, we need 

in these trajectories we found l i t t le difference in  accuracy 

This type of comparison must be made prior to carrying out exten- 
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make only one calculation with the normalized equations. 

have to proceed step-by-step starting from the init ial position. 

By numerical integration, we 
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IV. 3 Error Sources 

Even with time dependence and nonlinear effects included, the normalized solutions we 

have obtained ultimately diverge from the numerically integrated trajectories. This i s  be- 

cause of truncation and round-off errors which occur at various stages of the normalization 

process. 

1. The Birkhoff Normalization technique for solving the differential equation generated by 

a Hamiltonian system in the neighborhood of an equilibrium point requires that the Hamil- 

tonian be expanded about that point, i n  terms consisting of state variable polynomials. I t  

i s  at this point that new errors are introduced because of  a number of factors: 

a) The Hamiltonian i s  expanded i n  terms of polynomials of state vector components. 

This expansion must be truncated. 

, b) For time-dependent Hamiltonians (elliptical restricted three-body problem), the 

time-dependent contributions must be expanded in  periodic functions and trun- 

cated. 

2. Second order normalization for a time-dependent Hamiltonian involves a number of 

sequential processes. These processes are: 

a) 

b) 

Numerical computation of eigenvalues, producing round-off error. 

Use of a finite recursive technique to solve a system of linear time-dependent 

differential equations,which requires truncation. The solution to the equation 

i s  composed of periodic functions, whose coefficients are computed numerically. 

A great deal of numerical manipulation i s  required, hence the problem of round- 

off i s  significant. 

3. As a result of each level of higher order normalization, a generating function and i t s  

corresponding transformed Hamiltonian i s  produced. The coefficients of terms in the 

generating functions and new Hamiltonians are subject to round-off error. Also, i n  the 

computation for the coefficients of  terms in the new Hamiltonian, a small divisor i s  present 

which forces these numbers to become large. As a result of this division, the normalization 

can only be implemented for a limited number of orders. 
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4. The higher order normalization process yields generating functions, each of which 

implicitly relates two sets of coordinates. It i s  necessary to obtain explicit relations be- 

tween these two coordinate sets. There are two techniques available for this purpose, 

namely: 

a) numerical iteration 

b) symbolic expansion, 

The first of these does not produce algebraic functions relating coordinates, which i s  one 

of our objectives, so the second technique was studied here. This method does introduce 

truncation as well as round-off errors. The truncation errors can become excessive. 

5. As a result of inverting each generating function the explicit representation of coor- 

dinates i s  available. The functions relating coordinates are combined to obtain one al-  

gebraic transformation to and from the original and final set. This computation i s  another 

source of round-off error. 

6. The algebraic solution i s  a set of large time-dependent polynomials which have to be 

evaluated for each trajectory point. This evaluation again introduces round-off error. 

To determine the relative magnitude of the errors due to these various sources, would re- 

quire a systematic study which i s  beyond the scope of this report. 

PR/HJF 

3- 1405 

6-6-68 

69 



V. REFERENCES 

[71 

Moulton, F. R. , "An Introduction to Celastial Mechanics", 2nd rev. ed, 

Macmillan, New York, 1914. 

Grebenikov, E.A. , "On the Stability of tho Lagrangian trlangla Solutioni of the 

Restrictod Elliptic Three-Body Problem", Soviet Astronomy, Vol. 8, No. 3, 

Nov, - DOC., 1964. 

Danby, J.M.A. , "Stability of the Triangular Points in the Elliptic Restricted 

Problem of Three Bodies," Astron. J. 69, 165-172, 1964, 

Bennett, A. , "Characteristic Exponents of the Five Equillbrium Solutions in  the 

Elliptically Restricted Problem", ICARUS 4, 177-187, 1965. 

LaSalle, J. and Lefschetr, "Stability by Liapunov's Direct Method with 

Applications", Academic Press, 1961. 

Leontovich, A, M. , "On the Stability of the Lagrange Periodic Solutions for 

The Restricted Problem of Three Bodies, Soviet Math. Dokl. 3, 425-429, 1962. 

Deprit, A. , "Stability of Triangular Lagrangian Points", Astron. Journal Vol. 72, 

1967. 

Birkhoff, G. D. , "Dynamical Systems", New York,1927. 

Chai, W.A. and Kass, S. , "Birkhoff Normalization Process Program for Time- 

Independent Hamiltonian Systems'', AFOSR Scientific Report 67-01 23, 

October, 1966. 

[ 101 Coddington, E.A. , and Levinson, N., "Theory of Ordinary Differential Equa- 

tions'', McGraw Hill, New York, 1955. 

[ 11  ] Bernstein, Irwin S. , "Finite Time Stability of Periodic Solutions of Hamiltonian 

Systems", NASA TMX-53478, June, 1966. 

70 

1 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
1 
I 
1 
I 
I 
I 
I 


